3.1.96 \(\int \frac {x^5 (a+b \sec ^{-1}(c x))}{(d+e x^2)^2} \, dx\) [96]

3.1.96.1 Optimal result
3.1.96.2 Mathematica [B] (warning: unable to verify)
3.1.96.3 Rubi [A] (verified)
3.1.96.4 Maple [C] (warning: unable to verify)
3.1.96.5 Fricas [F]
3.1.96.6 Sympy [F]
3.1.96.7 Maxima [F]
3.1.96.8 Giac [F(-1)]
3.1.96.9 Mupad [F(-1)]

3.1.96.1 Optimal result

Integrand size = 21, antiderivative size = 608 \[ \int \frac {x^5 \left (a+b \sec ^{-1}(c x)\right )}{\left (d+e x^2\right )^2} \, dx=-\frac {b \sqrt {1-\frac {1}{c^2 x^2}} x}{2 c e^2}+\frac {d \left (a+b \sec ^{-1}(c x)\right )}{2 e^2 \left (e+\frac {d}{x^2}\right )}+\frac {x^2 \left (a+b \sec ^{-1}(c x)\right )}{2 e^2}+\frac {b d \arctan \left (\frac {\sqrt {c^2 d+e}}{c \sqrt {e} \sqrt {1-\frac {1}{c^2 x^2}} x}\right )}{2 e^{5/2} \sqrt {c^2 d+e}}-\frac {d \left (a+b \sec ^{-1}(c x)\right ) \log \left (1-\frac {c \sqrt {-d} e^{i \sec ^{-1}(c x)}}{\sqrt {e}-\sqrt {c^2 d+e}}\right )}{e^3}-\frac {d \left (a+b \sec ^{-1}(c x)\right ) \log \left (1+\frac {c \sqrt {-d} e^{i \sec ^{-1}(c x)}}{\sqrt {e}-\sqrt {c^2 d+e}}\right )}{e^3}-\frac {d \left (a+b \sec ^{-1}(c x)\right ) \log \left (1-\frac {c \sqrt {-d} e^{i \sec ^{-1}(c x)}}{\sqrt {e}+\sqrt {c^2 d+e}}\right )}{e^3}-\frac {d \left (a+b \sec ^{-1}(c x)\right ) \log \left (1+\frac {c \sqrt {-d} e^{i \sec ^{-1}(c x)}}{\sqrt {e}+\sqrt {c^2 d+e}}\right )}{e^3}+\frac {2 d \left (a+b \sec ^{-1}(c x)\right ) \log \left (1+e^{2 i \sec ^{-1}(c x)}\right )}{e^3}+\frac {i b d \operatorname {PolyLog}\left (2,-\frac {c \sqrt {-d} e^{i \sec ^{-1}(c x)}}{\sqrt {e}-\sqrt {c^2 d+e}}\right )}{e^3}+\frac {i b d \operatorname {PolyLog}\left (2,\frac {c \sqrt {-d} e^{i \sec ^{-1}(c x)}}{\sqrt {e}-\sqrt {c^2 d+e}}\right )}{e^3}+\frac {i b d \operatorname {PolyLog}\left (2,-\frac {c \sqrt {-d} e^{i \sec ^{-1}(c x)}}{\sqrt {e}+\sqrt {c^2 d+e}}\right )}{e^3}+\frac {i b d \operatorname {PolyLog}\left (2,\frac {c \sqrt {-d} e^{i \sec ^{-1}(c x)}}{\sqrt {e}+\sqrt {c^2 d+e}}\right )}{e^3}-\frac {i b d \operatorname {PolyLog}\left (2,-e^{2 i \sec ^{-1}(c x)}\right )}{e^3} \]

output
1/2*d*(a+b*arcsec(c*x))/e^2/(e+d/x^2)+1/2*x^2*(a+b*arcsec(c*x))/e^2+2*d*(a 
+b*arcsec(c*x))*ln(1+(1/c/x+I*(1-1/c^2/x^2)^(1/2))^2)/e^3-d*(a+b*arcsec(c* 
x))*ln(1-c*(1/c/x+I*(1-1/c^2/x^2)^(1/2))*(-d)^(1/2)/(e^(1/2)-(c^2*d+e)^(1/ 
2)))/e^3-d*(a+b*arcsec(c*x))*ln(1+c*(1/c/x+I*(1-1/c^2/x^2)^(1/2))*(-d)^(1/ 
2)/(e^(1/2)-(c^2*d+e)^(1/2)))/e^3-d*(a+b*arcsec(c*x))*ln(1-c*(1/c/x+I*(1-1 
/c^2/x^2)^(1/2))*(-d)^(1/2)/(e^(1/2)+(c^2*d+e)^(1/2)))/e^3-d*(a+b*arcsec(c 
*x))*ln(1+c*(1/c/x+I*(1-1/c^2/x^2)^(1/2))*(-d)^(1/2)/(e^(1/2)+(c^2*d+e)^(1 
/2)))/e^3-I*b*d*polylog(2,-(1/c/x+I*(1-1/c^2/x^2)^(1/2))^2)/e^3+I*b*d*poly 
log(2,-c*(1/c/x+I*(1-1/c^2/x^2)^(1/2))*(-d)^(1/2)/(e^(1/2)-(c^2*d+e)^(1/2) 
))/e^3+I*b*d*polylog(2,c*(1/c/x+I*(1-1/c^2/x^2)^(1/2))*(-d)^(1/2)/(e^(1/2) 
-(c^2*d+e)^(1/2)))/e^3+I*b*d*polylog(2,-c*(1/c/x+I*(1-1/c^2/x^2)^(1/2))*(- 
d)^(1/2)/(e^(1/2)+(c^2*d+e)^(1/2)))/e^3+I*b*d*polylog(2,c*(1/c/x+I*(1-1/c^ 
2/x^2)^(1/2))*(-d)^(1/2)/(e^(1/2)+(c^2*d+e)^(1/2)))/e^3+1/2*b*d*arctan((c^ 
2*d+e)^(1/2)/c/x/e^(1/2)/(1-1/c^2/x^2)^(1/2))/e^(5/2)/(c^2*d+e)^(1/2)-1/2* 
b*x*(1-1/c^2/x^2)^(1/2)/c/e^2
 
3.1.96.2 Mathematica [B] (warning: unable to verify)

Both result and optimal contain complex but leaf count is larger than twice the leaf count of optimal. \(1255\) vs. \(2(608)=1216\).

Time = 3.18 (sec) , antiderivative size = 1255, normalized size of antiderivative = 2.06 \[ \int \frac {x^5 \left (a+b \sec ^{-1}(c x)\right )}{\left (d+e x^2\right )^2} \, dx =\text {Too large to display} \]

input
Integrate[(x^5*(a + b*ArcSec[c*x]))/(d + e*x^2)^2,x]
 
output
-1/4*(-2*a*e*x^2 + (2*a*d^2)/(d + e*x^2) + 4*a*d*Log[d + e*x^2] + b*((2*e* 
Sqrt[1 - 1/(c^2*x^2)]*x)/c - 2*e*x^2*ArcSec[c*x] + (d^(3/2)*ArcSec[c*x])/( 
Sqrt[d] - I*Sqrt[e]*x) + (d^(3/2)*ArcSec[c*x])/(Sqrt[d] + I*Sqrt[e]*x) + 2 
*d*ArcSin[1/(c*x)] + (16*I)*d*ArcSin[Sqrt[1 - (I*Sqrt[e])/(c*Sqrt[d])]/Sqr 
t[2]]*ArcTan[(((-I)*c*Sqrt[d] + Sqrt[e])*Tan[ArcSec[c*x]/2])/Sqrt[c^2*d + 
e]] + (16*I)*d*ArcSin[Sqrt[1 + (I*Sqrt[e])/(c*Sqrt[d])]/Sqrt[2]]*ArcTan[(( 
I*c*Sqrt[d] + Sqrt[e])*Tan[ArcSec[c*x]/2])/Sqrt[c^2*d + e]] + 4*d*ArcSec[c 
*x]*Log[1 + (I*(Sqrt[e] - Sqrt[c^2*d + e])*E^(I*ArcSec[c*x]))/(c*Sqrt[d])] 
 + 8*d*ArcSin[Sqrt[1 + (I*Sqrt[e])/(c*Sqrt[d])]/Sqrt[2]]*Log[1 + (I*(Sqrt[ 
e] - Sqrt[c^2*d + e])*E^(I*ArcSec[c*x]))/(c*Sqrt[d])] + 4*d*ArcSec[c*x]*Lo 
g[1 + (I*(-Sqrt[e] + Sqrt[c^2*d + e])*E^(I*ArcSec[c*x]))/(c*Sqrt[d])] + 8* 
d*ArcSin[Sqrt[1 - (I*Sqrt[e])/(c*Sqrt[d])]/Sqrt[2]]*Log[1 + (I*(-Sqrt[e] + 
 Sqrt[c^2*d + e])*E^(I*ArcSec[c*x]))/(c*Sqrt[d])] + 4*d*ArcSec[c*x]*Log[1 
- (I*(Sqrt[e] + Sqrt[c^2*d + e])*E^(I*ArcSec[c*x]))/(c*Sqrt[d])] - 8*d*Arc 
Sin[Sqrt[1 - (I*Sqrt[e])/(c*Sqrt[d])]/Sqrt[2]]*Log[1 - (I*(Sqrt[e] + Sqrt[ 
c^2*d + e])*E^(I*ArcSec[c*x]))/(c*Sqrt[d])] + 4*d*ArcSec[c*x]*Log[1 + (I*( 
Sqrt[e] + Sqrt[c^2*d + e])*E^(I*ArcSec[c*x]))/(c*Sqrt[d])] - 8*d*ArcSin[Sq 
rt[1 + (I*Sqrt[e])/(c*Sqrt[d])]/Sqrt[2]]*Log[1 + (I*(Sqrt[e] + Sqrt[c^2*d 
+ e])*E^(I*ArcSec[c*x]))/(c*Sqrt[d])] - 8*d*ArcSec[c*x]*Log[1 + E^((2*I)*A 
rcSec[c*x])] - (d*Sqrt[e]*Log[(2*Sqrt[d]*Sqrt[e]*(Sqrt[e] + c*(I*c*Sqrt...
 
3.1.96.3 Rubi [A] (verified)

Time = 1.77 (sec) , antiderivative size = 676, normalized size of antiderivative = 1.11, number of steps used = 4, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.143, Rules used = {5763, 5233, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^5 \left (a+b \sec ^{-1}(c x)\right )}{\left (d+e x^2\right )^2} \, dx\)

\(\Big \downarrow \) 5763

\(\displaystyle -\int \frac {x^3 \left (a+b \arccos \left (\frac {1}{c x}\right )\right )}{\left (\frac {d}{x^2}+e\right )^2}d\frac {1}{x}\)

\(\Big \downarrow \) 5233

\(\displaystyle -\int \left (\frac {\left (a+b \arccos \left (\frac {1}{c x}\right )\right ) x^3}{e^2}-\frac {2 d \left (a+b \arccos \left (\frac {1}{c x}\right )\right ) x}{e^3}+\frac {2 d^2 \left (a+b \arccos \left (\frac {1}{c x}\right )\right )}{e^3 \left (\frac {d}{x^2}+e\right ) x}+\frac {d^2 \left (a+b \arccos \left (\frac {1}{c x}\right )\right )}{e^2 \left (\frac {d}{x^2}+e\right )^2 x}\right )d\frac {1}{x}\)

\(\Big \downarrow \) 2009

\(\displaystyle -\frac {d \left (a+b \arccos \left (\frac {1}{c x}\right )\right ) \log \left (1-\frac {c \sqrt {-d} e^{i \arccos \left (\frac {1}{c x}\right )}}{\sqrt {e}-\sqrt {c^2 d+e}}\right )}{e^3}-\frac {d \left (a+b \arccos \left (\frac {1}{c x}\right )\right ) \log \left (1+\frac {c \sqrt {-d} e^{i \arccos \left (\frac {1}{c x}\right )}}{\sqrt {e}-\sqrt {c^2 d+e}}\right )}{e^3}-\frac {d \left (a+b \arccos \left (\frac {1}{c x}\right )\right ) \log \left (1-\frac {c \sqrt {-d} e^{i \arccos \left (\frac {1}{c x}\right )}}{\sqrt {c^2 d+e}+\sqrt {e}}\right )}{e^3}-\frac {d \left (a+b \arccos \left (\frac {1}{c x}\right )\right ) \log \left (1+\frac {c \sqrt {-d} e^{i \arccos \left (\frac {1}{c x}\right )}}{\sqrt {c^2 d+e}+\sqrt {e}}\right )}{e^3}+\frac {2 d \log \left (1+e^{2 i \arccos \left (\frac {1}{c x}\right )}\right ) \left (a+b \arccos \left (\frac {1}{c x}\right )\right )}{e^3}+\frac {d \left (a+b \arccos \left (\frac {1}{c x}\right )\right )}{2 e^2 \left (\frac {d}{x^2}+e\right )}+\frac {x^2 \left (a+b \arccos \left (\frac {1}{c x}\right )\right )}{2 e^2}+\frac {i b d \operatorname {PolyLog}\left (2,-\frac {c \sqrt {-d} e^{i \arccos \left (\frac {1}{c x}\right )}}{\sqrt {e}-\sqrt {d c^2+e}}\right )}{e^3}+\frac {i b d \operatorname {PolyLog}\left (2,\frac {c \sqrt {-d} e^{i \arccos \left (\frac {1}{c x}\right )}}{\sqrt {e}-\sqrt {d c^2+e}}\right )}{e^3}+\frac {i b d \operatorname {PolyLog}\left (2,-\frac {c \sqrt {-d} e^{i \arccos \left (\frac {1}{c x}\right )}}{\sqrt {e}+\sqrt {d c^2+e}}\right )}{e^3}+\frac {i b d \operatorname {PolyLog}\left (2,\frac {c \sqrt {-d} e^{i \arccos \left (\frac {1}{c x}\right )}}{\sqrt {e}+\sqrt {d c^2+e}}\right )}{e^3}-\frac {i b d \operatorname {PolyLog}\left (2,-e^{2 i \arccos \left (\frac {1}{c x}\right )}\right )}{e^3}+\frac {b d \arctan \left (\frac {\sqrt {c^2 d+e}}{c \sqrt {e} x \sqrt {1-\frac {1}{c^2 x^2}}}\right )}{2 e^{5/2} \sqrt {c^2 d+e}}-\frac {b x \sqrt {1-\frac {1}{c^2 x^2}}}{2 c e^2}\)

input
Int[(x^5*(a + b*ArcSec[c*x]))/(d + e*x^2)^2,x]
 
output
-1/2*(b*Sqrt[1 - 1/(c^2*x^2)]*x)/(c*e^2) + (d*(a + b*ArcCos[1/(c*x)]))/(2* 
e^2*(e + d/x^2)) + (x^2*(a + b*ArcCos[1/(c*x)]))/(2*e^2) + (b*d*ArcTan[Sqr 
t[c^2*d + e]/(c*Sqrt[e]*Sqrt[1 - 1/(c^2*x^2)]*x)])/(2*e^(5/2)*Sqrt[c^2*d + 
 e]) - (d*(a + b*ArcCos[1/(c*x)])*Log[1 - (c*Sqrt[-d]*E^(I*ArcCos[1/(c*x)] 
))/(Sqrt[e] - Sqrt[c^2*d + e])])/e^3 - (d*(a + b*ArcCos[1/(c*x)])*Log[1 + 
(c*Sqrt[-d]*E^(I*ArcCos[1/(c*x)]))/(Sqrt[e] - Sqrt[c^2*d + e])])/e^3 - (d* 
(a + b*ArcCos[1/(c*x)])*Log[1 - (c*Sqrt[-d]*E^(I*ArcCos[1/(c*x)]))/(Sqrt[e 
] + Sqrt[c^2*d + e])])/e^3 - (d*(a + b*ArcCos[1/(c*x)])*Log[1 + (c*Sqrt[-d 
]*E^(I*ArcCos[1/(c*x)]))/(Sqrt[e] + Sqrt[c^2*d + e])])/e^3 + (2*d*(a + b*A 
rcCos[1/(c*x)])*Log[1 + E^((2*I)*ArcCos[1/(c*x)])])/e^3 + (I*b*d*PolyLog[2 
, -((c*Sqrt[-d]*E^(I*ArcCos[1/(c*x)]))/(Sqrt[e] - Sqrt[c^2*d + e]))])/e^3 
+ (I*b*d*PolyLog[2, (c*Sqrt[-d]*E^(I*ArcCos[1/(c*x)]))/(Sqrt[e] - Sqrt[c^2 
*d + e])])/e^3 + (I*b*d*PolyLog[2, -((c*Sqrt[-d]*E^(I*ArcCos[1/(c*x)]))/(S 
qrt[e] + Sqrt[c^2*d + e]))])/e^3 + (I*b*d*PolyLog[2, (c*Sqrt[-d]*E^(I*ArcC 
os[1/(c*x)]))/(Sqrt[e] + Sqrt[c^2*d + e])])/e^3 - (I*b*d*PolyLog[2, -E^((2 
*I)*ArcCos[1/(c*x)])])/e^3
 

3.1.96.3.1 Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 5233
Int[((a_.) + ArcCos[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_.)*((d_) + (e_ 
.)*(x_)^2)^(p_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*ArcCos[c*x])^n, ( 
f*x)^m*(d + e*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[c^2*d + 
 e, 0] && IGtQ[n, 0] && IntegerQ[p] && IntegerQ[m]
 

rule 5763
Int[((a_.) + ArcSec[(c_.)*(x_)]*(b_.))^(n_.)*(x_)^(m_.)*((d_.) + (e_.)*(x_) 
^2)^(p_.), x_Symbol] :> -Subst[Int[(e + d*x^2)^p*((a + b*ArcCos[x/c])^n/x^( 
m + 2*(p + 1))), x], x, 1/x] /; FreeQ[{a, b, c, d, e, n}, x] && IGtQ[n, 0] 
&& IntegerQ[m] && IntegerQ[p]
 
3.1.96.4 Maple [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 9.59 (sec) , antiderivative size = 701, normalized size of antiderivative = 1.15

method result size
parts \(\frac {a \,x^{2}}{2 e^{2}}-\frac {a \,d^{2}}{2 e^{3} \left (e \,x^{2}+d \right )}-\frac {a d \ln \left (e \,x^{2}+d \right )}{e^{3}}+\frac {b \left (\frac {c^{4} \left (2 c^{4} d \,\operatorname {arcsec}\left (c x \right ) x^{2}+\operatorname {arcsec}\left (c x \right ) e \,c^{4} x^{4}-\sqrt {\frac {c^{2} x^{2}-1}{c^{2} x^{2}}}\, c^{3} d x -\sqrt {\frac {c^{2} x^{2}-1}{c^{2} x^{2}}}\, e \,c^{3} x^{3}-i c^{2} d -i e \,c^{2} x^{2}\right )}{2 \left (c^{2} e \,x^{2}+c^{2} d \right ) e^{2}}-\frac {i \sqrt {e \left (c^{2} d +e \right )}\, \operatorname {arctanh}\left (\frac {2 c^{2} d {\left (\frac {1}{c x}+i \sqrt {1-\frac {1}{c^{2} x^{2}}}\right )}^{2}+2 c^{2} d +4 e}{4 \sqrt {c^{2} d e +e^{2}}}\right ) d \,c^{6}}{2 \left (c^{2} d +e \right ) e^{3}}-\frac {2 i d \,c^{6} \operatorname {dilog}\left (1-i \left (\frac {1}{c x}+i \sqrt {1-\frac {1}{c^{2} x^{2}}}\right )\right )}{e^{3}}+\frac {i d^{2} c^{8} \left (\munderset {\textit {\_R1} =\operatorname {RootOf}\left (c^{2} d \,\textit {\_Z}^{4}+\left (2 c^{2} d +4 e \right ) \textit {\_Z}^{2}+c^{2} d \right )}{\sum }\frac {\left (\textit {\_R1}^{2}+1\right ) \left (i \operatorname {arcsec}\left (c x \right ) \ln \left (\frac {\textit {\_R1} -\frac {1}{c x}-i \sqrt {1-\frac {1}{c^{2} x^{2}}}}{\textit {\_R1}}\right )+\operatorname {dilog}\left (\frac {\textit {\_R1} -\frac {1}{c x}-i \sqrt {1-\frac {1}{c^{2} x^{2}}}}{\textit {\_R1}}\right )\right )}{\textit {\_R1}^{2} c^{2} d +c^{2} d +2 e}\right )}{2 e^{3}}+\frac {i d \,c^{6} \left (\munderset {\textit {\_R1} =\operatorname {RootOf}\left (c^{2} d \,\textit {\_Z}^{4}+\left (2 c^{2} d +4 e \right ) \textit {\_Z}^{2}+c^{2} d \right )}{\sum }\frac {\left (\textit {\_R1}^{2} c^{2} d +c^{2} d +4 e \right ) \left (i \operatorname {arcsec}\left (c x \right ) \ln \left (\frac {\textit {\_R1} -\frac {1}{c x}-i \sqrt {1-\frac {1}{c^{2} x^{2}}}}{\textit {\_R1}}\right )+\operatorname {dilog}\left (\frac {\textit {\_R1} -\frac {1}{c x}-i \sqrt {1-\frac {1}{c^{2} x^{2}}}}{\textit {\_R1}}\right )\right )}{\textit {\_R1}^{2} c^{2} d +c^{2} d +2 e}\right )}{2 e^{3}}-\frac {2 i d \,c^{6} \operatorname {dilog}\left (1+i \left (\frac {1}{c x}+i \sqrt {1-\frac {1}{c^{2} x^{2}}}\right )\right )}{e^{3}}+\frac {2 d \,c^{6} \operatorname {arcsec}\left (c x \right ) \ln \left (1+i \left (\frac {1}{c x}+i \sqrt {1-\frac {1}{c^{2} x^{2}}}\right )\right )}{e^{3}}+\frac {2 d \,c^{6} \operatorname {arcsec}\left (c x \right ) \ln \left (1-i \left (\frac {1}{c x}+i \sqrt {1-\frac {1}{c^{2} x^{2}}}\right )\right )}{e^{3}}\right )}{c^{6}}\) \(701\)
derivativedivides \(\frac {\frac {a \,c^{6} x^{2}}{2 e^{2}}-\frac {a \,c^{8} d^{2}}{2 e^{3} \left (c^{2} e \,x^{2}+c^{2} d \right )}-\frac {a \,c^{6} d \ln \left (c^{2} e \,x^{2}+c^{2} d \right )}{e^{3}}+b \,c^{4} \left (\frac {2 c^{4} d \,\operatorname {arcsec}\left (c x \right ) x^{2}+\operatorname {arcsec}\left (c x \right ) e \,c^{4} x^{4}-\sqrt {\frac {c^{2} x^{2}-1}{c^{2} x^{2}}}\, c^{3} d x -\sqrt {\frac {c^{2} x^{2}-1}{c^{2} x^{2}}}\, e \,c^{3} x^{3}-i c^{2} d -i e \,c^{2} x^{2}}{2 \left (c^{2} e \,x^{2}+c^{2} d \right ) e^{2}}+\frac {i c^{4} d^{2} \left (\munderset {\textit {\_R1} =\operatorname {RootOf}\left (c^{2} d \,\textit {\_Z}^{4}+\left (2 c^{2} d +4 e \right ) \textit {\_Z}^{2}+c^{2} d \right )}{\sum }\frac {\left (\textit {\_R1}^{2}+1\right ) \left (i \operatorname {arcsec}\left (c x \right ) \ln \left (\frac {\textit {\_R1} -\frac {1}{c x}-i \sqrt {1-\frac {1}{c^{2} x^{2}}}}{\textit {\_R1}}\right )+\operatorname {dilog}\left (\frac {\textit {\_R1} -\frac {1}{c x}-i \sqrt {1-\frac {1}{c^{2} x^{2}}}}{\textit {\_R1}}\right )\right )}{\textit {\_R1}^{2} c^{2} d +c^{2} d +2 e}\right )}{2 e^{3}}+\frac {i c^{2} d \left (\munderset {\textit {\_R1} =\operatorname {RootOf}\left (c^{2} d \,\textit {\_Z}^{4}+\left (2 c^{2} d +4 e \right ) \textit {\_Z}^{2}+c^{2} d \right )}{\sum }\frac {\left (\textit {\_R1}^{2} c^{2} d +c^{2} d +4 e \right ) \left (i \operatorname {arcsec}\left (c x \right ) \ln \left (\frac {\textit {\_R1} -\frac {1}{c x}-i \sqrt {1-\frac {1}{c^{2} x^{2}}}}{\textit {\_R1}}\right )+\operatorname {dilog}\left (\frac {\textit {\_R1} -\frac {1}{c x}-i \sqrt {1-\frac {1}{c^{2} x^{2}}}}{\textit {\_R1}}\right )\right )}{\textit {\_R1}^{2} c^{2} d +c^{2} d +2 e}\right )}{2 e^{3}}-\frac {2 i c^{2} d \operatorname {dilog}\left (1+i \left (\frac {1}{c x}+i \sqrt {1-\frac {1}{c^{2} x^{2}}}\right )\right )}{e^{3}}-\frac {2 i c^{2} d \operatorname {dilog}\left (1-i \left (\frac {1}{c x}+i \sqrt {1-\frac {1}{c^{2} x^{2}}}\right )\right )}{e^{3}}-\frac {i \sqrt {e \left (c^{2} d +e \right )}\, \operatorname {arctanh}\left (\frac {2 c^{2} d {\left (\frac {1}{c x}+i \sqrt {1-\frac {1}{c^{2} x^{2}}}\right )}^{2}+2 c^{2} d +4 e}{4 \sqrt {c^{2} d e +e^{2}}}\right ) d \,c^{2}}{2 e^{3} \left (c^{2} d +e \right )}+\frac {2 c^{2} d \,\operatorname {arcsec}\left (c x \right ) \ln \left (1+i \left (\frac {1}{c x}+i \sqrt {1-\frac {1}{c^{2} x^{2}}}\right )\right )}{e^{3}}+\frac {2 c^{2} d \,\operatorname {arcsec}\left (c x \right ) \ln \left (1-i \left (\frac {1}{c x}+i \sqrt {1-\frac {1}{c^{2} x^{2}}}\right )\right )}{e^{3}}\right )}{c^{6}}\) \(725\)
default \(\frac {\frac {a \,c^{6} x^{2}}{2 e^{2}}-\frac {a \,c^{8} d^{2}}{2 e^{3} \left (c^{2} e \,x^{2}+c^{2} d \right )}-\frac {a \,c^{6} d \ln \left (c^{2} e \,x^{2}+c^{2} d \right )}{e^{3}}+b \,c^{4} \left (\frac {2 c^{4} d \,\operatorname {arcsec}\left (c x \right ) x^{2}+\operatorname {arcsec}\left (c x \right ) e \,c^{4} x^{4}-\sqrt {\frac {c^{2} x^{2}-1}{c^{2} x^{2}}}\, c^{3} d x -\sqrt {\frac {c^{2} x^{2}-1}{c^{2} x^{2}}}\, e \,c^{3} x^{3}-i c^{2} d -i e \,c^{2} x^{2}}{2 \left (c^{2} e \,x^{2}+c^{2} d \right ) e^{2}}+\frac {i c^{4} d^{2} \left (\munderset {\textit {\_R1} =\operatorname {RootOf}\left (c^{2} d \,\textit {\_Z}^{4}+\left (2 c^{2} d +4 e \right ) \textit {\_Z}^{2}+c^{2} d \right )}{\sum }\frac {\left (\textit {\_R1}^{2}+1\right ) \left (i \operatorname {arcsec}\left (c x \right ) \ln \left (\frac {\textit {\_R1} -\frac {1}{c x}-i \sqrt {1-\frac {1}{c^{2} x^{2}}}}{\textit {\_R1}}\right )+\operatorname {dilog}\left (\frac {\textit {\_R1} -\frac {1}{c x}-i \sqrt {1-\frac {1}{c^{2} x^{2}}}}{\textit {\_R1}}\right )\right )}{\textit {\_R1}^{2} c^{2} d +c^{2} d +2 e}\right )}{2 e^{3}}+\frac {i c^{2} d \left (\munderset {\textit {\_R1} =\operatorname {RootOf}\left (c^{2} d \,\textit {\_Z}^{4}+\left (2 c^{2} d +4 e \right ) \textit {\_Z}^{2}+c^{2} d \right )}{\sum }\frac {\left (\textit {\_R1}^{2} c^{2} d +c^{2} d +4 e \right ) \left (i \operatorname {arcsec}\left (c x \right ) \ln \left (\frac {\textit {\_R1} -\frac {1}{c x}-i \sqrt {1-\frac {1}{c^{2} x^{2}}}}{\textit {\_R1}}\right )+\operatorname {dilog}\left (\frac {\textit {\_R1} -\frac {1}{c x}-i \sqrt {1-\frac {1}{c^{2} x^{2}}}}{\textit {\_R1}}\right )\right )}{\textit {\_R1}^{2} c^{2} d +c^{2} d +2 e}\right )}{2 e^{3}}-\frac {2 i c^{2} d \operatorname {dilog}\left (1+i \left (\frac {1}{c x}+i \sqrt {1-\frac {1}{c^{2} x^{2}}}\right )\right )}{e^{3}}-\frac {2 i c^{2} d \operatorname {dilog}\left (1-i \left (\frac {1}{c x}+i \sqrt {1-\frac {1}{c^{2} x^{2}}}\right )\right )}{e^{3}}-\frac {i \sqrt {e \left (c^{2} d +e \right )}\, \operatorname {arctanh}\left (\frac {2 c^{2} d {\left (\frac {1}{c x}+i \sqrt {1-\frac {1}{c^{2} x^{2}}}\right )}^{2}+2 c^{2} d +4 e}{4 \sqrt {c^{2} d e +e^{2}}}\right ) d \,c^{2}}{2 e^{3} \left (c^{2} d +e \right )}+\frac {2 c^{2} d \,\operatorname {arcsec}\left (c x \right ) \ln \left (1+i \left (\frac {1}{c x}+i \sqrt {1-\frac {1}{c^{2} x^{2}}}\right )\right )}{e^{3}}+\frac {2 c^{2} d \,\operatorname {arcsec}\left (c x \right ) \ln \left (1-i \left (\frac {1}{c x}+i \sqrt {1-\frac {1}{c^{2} x^{2}}}\right )\right )}{e^{3}}\right )}{c^{6}}\) \(725\)

input
int(x^5*(a+b*arcsec(c*x))/(e*x^2+d)^2,x,method=_RETURNVERBOSE)
 
output
1/2*a*x^2/e^2-1/2*a*d^2/e^3/(e*x^2+d)-a*d/e^3*ln(e*x^2+d)+b/c^6*(1/2*c^4*( 
2*c^4*d*arcsec(c*x)*x^2+arcsec(c*x)*e*c^4*x^4-((c^2*x^2-1)/c^2/x^2)^(1/2)* 
c^3*d*x-((c^2*x^2-1)/c^2/x^2)^(1/2)*e*c^3*x^3-I*c^2*d-I*e*c^2*x^2)/(c^2*e* 
x^2+c^2*d)/e^2-1/2*I*(e*(c^2*d+e))^(1/2)/(c^2*d+e)/e^3*arctanh(1/4*(2*c^2* 
d*(1/c/x+I*(1-1/c^2/x^2)^(1/2))^2+2*c^2*d+4*e)/(c^2*d*e+e^2)^(1/2))*d*c^6- 
2*I/e^3*d*c^6*dilog(1-I*(1/c/x+I*(1-1/c^2/x^2)^(1/2)))+1/2*I/e^3*d^2*c^8*s 
um((_R1^2+1)/(_R1^2*c^2*d+c^2*d+2*e)*(I*arcsec(c*x)*ln((_R1-1/c/x-I*(1-1/c 
^2/x^2)^(1/2))/_R1)+dilog((_R1-1/c/x-I*(1-1/c^2/x^2)^(1/2))/_R1)),_R1=Root 
Of(c^2*d*_Z^4+(2*c^2*d+4*e)*_Z^2+c^2*d))+1/2*I/e^3*d*c^6*sum((_R1^2*c^2*d+ 
c^2*d+4*e)/(_R1^2*c^2*d+c^2*d+2*e)*(I*arcsec(c*x)*ln((_R1-1/c/x-I*(1-1/c^2 
/x^2)^(1/2))/_R1)+dilog((_R1-1/c/x-I*(1-1/c^2/x^2)^(1/2))/_R1)),_R1=RootOf 
(c^2*d*_Z^4+(2*c^2*d+4*e)*_Z^2+c^2*d))-2*I/e^3*d*c^6*dilog(1+I*(1/c/x+I*(1 
-1/c^2/x^2)^(1/2)))+2/e^3*d*c^6*arcsec(c*x)*ln(1+I*(1/c/x+I*(1-1/c^2/x^2)^ 
(1/2)))+2/e^3*d*c^6*arcsec(c*x)*ln(1-I*(1/c/x+I*(1-1/c^2/x^2)^(1/2))))
 
3.1.96.5 Fricas [F]

\[ \int \frac {x^5 \left (a+b \sec ^{-1}(c x)\right )}{\left (d+e x^2\right )^2} \, dx=\int { \frac {{\left (b \operatorname {arcsec}\left (c x\right ) + a\right )} x^{5}}{{\left (e x^{2} + d\right )}^{2}} \,d x } \]

input
integrate(x^5*(a+b*arcsec(c*x))/(e*x^2+d)^2,x, algorithm="fricas")
 
output
integral((b*x^5*arcsec(c*x) + a*x^5)/(e^2*x^4 + 2*d*e*x^2 + d^2), x)
 
3.1.96.6 Sympy [F]

\[ \int \frac {x^5 \left (a+b \sec ^{-1}(c x)\right )}{\left (d+e x^2\right )^2} \, dx=\int \frac {x^{5} \left (a + b \operatorname {asec}{\left (c x \right )}\right )}{\left (d + e x^{2}\right )^{2}}\, dx \]

input
integrate(x**5*(a+b*asec(c*x))/(e*x**2+d)**2,x)
 
output
Integral(x**5*(a + b*asec(c*x))/(d + e*x**2)**2, x)
 
3.1.96.7 Maxima [F]

\[ \int \frac {x^5 \left (a+b \sec ^{-1}(c x)\right )}{\left (d+e x^2\right )^2} \, dx=\int { \frac {{\left (b \operatorname {arcsec}\left (c x\right ) + a\right )} x^{5}}{{\left (e x^{2} + d\right )}^{2}} \,d x } \]

input
integrate(x^5*(a+b*arcsec(c*x))/(e*x^2+d)^2,x, algorithm="maxima")
 
output
-1/2*a*(d^2/(e^4*x^2 + d*e^3) - x^2/e^2 + 2*d*log(e*x^2 + d)/e^3) + b*inte 
grate(x^5*arctan(sqrt(c*x + 1)*sqrt(c*x - 1))/(e^2*x^4 + 2*d*e*x^2 + d^2), 
 x)
 
3.1.96.8 Giac [F(-1)]

Timed out. \[ \int \frac {x^5 \left (a+b \sec ^{-1}(c x)\right )}{\left (d+e x^2\right )^2} \, dx=\text {Timed out} \]

input
integrate(x^5*(a+b*arcsec(c*x))/(e*x^2+d)^2,x, algorithm="giac")
 
output
Timed out
 
3.1.96.9 Mupad [F(-1)]

Timed out. \[ \int \frac {x^5 \left (a+b \sec ^{-1}(c x)\right )}{\left (d+e x^2\right )^2} \, dx=\int \frac {x^5\,\left (a+b\,\mathrm {acos}\left (\frac {1}{c\,x}\right )\right )}{{\left (e\,x^2+d\right )}^2} \,d x \]

input
int((x^5*(a + b*acos(1/(c*x))))/(d + e*x^2)^2,x)
 
output
int((x^5*(a + b*acos(1/(c*x))))/(d + e*x^2)^2, x)